A Tool Kit for Partial Key Exposure Attacks on RSA

نویسندگان

  • Atsushi Takayasu
  • Noboru Kunihiro
چکیده

Thus far, partial key exposure attacks on RSA have been intensively studied using lattice based Coppersmith's methods. In the context, attackers are given partial information of a secret exponent and prime factors of (Multi-Prime) RSA where the partial information is exposed in various ways. Although these attack scenarios are worth studying, there are several known attacks whose constructions have similar flavor. In this paper, we try to formulate general attack scenarios to capture several existing ones and propose attacks for the scenarios. Our attacks contain all the state-of-the-art partial key exposure attacks, e.g., due to Ernst et al. (Eurocrypt'05) and Takayasu-Kunihiro (SAC'14, ICISC'14), as special cases. As a result, our attacks offer better results than previous best attacks in some special cases, e.g., Sarkar-Maitra's partial key exposure attacks on RSA with the most significant bits of a prime factor (ICISC'08) and Hinek's partial key exposure attacks on Multi-Prime RSA (J. Math. Cryptology '08). We claim that our contribution is not only generalizations or improvements of the existing results. Since our attacks capture general exposure scenarios, the results can be used as a tool kit; the security of some future variants of RSA can be examined without any knowledge of Coppersmith's methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Partial Key Exposure Attacks on RSA Revisited

At CRYPTO 2003, Blömer and May presented new partial key exposure attacks against RSA. These were the first known polynomial-time partial key exposure attacks against RSA with public exponent e > N . Attacks for known most significant bits and known least significant bits were presented. In this work, we extend their attacks to multi-prime RSA. For r-prime RSA, these result in the first known p...

متن کامل

On the security of multi-prime RSA

In this work we collect the strongest known algebraic attacks on multi-prime RSA. These include factoring, small private exponent, small CRT exponent and partial key exposure attacks. Five of the attacks are new. A new variant of partial key exposure attacks is also introduced which applies only to multi-prime RSA with more than two primes.

متن کامل

New Partial Key Exposure Attacks on RSA

In 1998, Boneh, Durfee and Frankel [4] presented several attacks on RSA when an adversary knows a fraction of the secret key bits. The motivation for these so-called partial key exposure attacks mainly arises from the study of side-channel attacks on RSA. With side channel attacks an adversary gets either most significant or least significant bits of the secret key. The polynomial time algorith...

متن کامل

Secret Exponent Attacks on RSA-type Schemes with Moduli N= prq

We consider RSA-type schemes with modulus N = pq for r ≥ 2. We present two new attacks for small secret exponent d. Both approaches are applications of Coppersmith’s method for solving modular univariate polynomial equations [5]. From these new attacks we directly derive partial key exposure attacks, i.e. attacks when the secret exponent is not necessarily small but when a fraction of the secre...

متن کامل

Secret Exponent Attacks on RSA-type Schemes with Moduli N = pq

We consider RSA-type schemes with modulus N = pq for r ≥ 2. We present two new attacks for small secret exponent d. Both approaches are applications of Coppersmith’s method for solving modular univariate polynomial equations [5]. From these new attacks we directly derive partial key exposure attacks, i.e. attacks when the secret exponent is not necessarily small but when a fraction of the secre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016